1. Andres, J. M. L., Rodrigo, M. M. T., Sugay, J. O., Baker, R. S., Paquette, L., Shute, V. J., Ventura, M., & Small, M. (2014). An exploratory analysis of confusion among students using Newton’s playground. In C.-C. Liu et al. (Eds.), Proceedings of the 22nd international conference on computers in education (pp. 65–70). Ishikawa, Japan: Asia-Pacific Society for Computers in Education.
2. Andres, J.M.L., Rodrigo, M.M.T., Baker, R.S., Paquette, L., Shute, V.J., & Ventura, M. (2015). Analyzing student action sequences and affect while playing physics playground. Paper presented at the international workshop on affect, meta-affect, data and learning (AMADL 2015) at the 17th international conference on artificial intelligence in education (AIED 2015), Madrid, Spain.
3. Andres, J. M. A. L., Ocumpaugh, J., Baker, R. S., Slater, S., Paquette, L., Jiang, Y., Karumbaiah, S., Bosch, N., Munshi, A., Moore, A., & Biswas, G. (2019). Affect sequences and learning in Betty's Brain. In S. Hsiao, J. Cunningham, K. McCarthy, G. Lynch, & N. Hoover (Eds.), Proceedings of the 9th International Conference on Learning Analytics and Knowledge (LAK 2019) (pp. 383-390). New York, NY: ACM.
4. Azevedo, R., Taub, M., & Mudrick, N. V. (2018). Using multi-channel trace data to infer and foster self-regulated learning between humans and advanced learning technologies. In D. H. Schunk & J. A. Greene (Eds.), Handbook of self-regulation of learning and performance (2nd ed., pp. 254–270). New York: Routledge.
5. Azevedo, R., Mudrick, N. V., Taub, M., & Bradbury, A. E. (2019). Self-regulation in computer-assisted learning systems. In J. Dunlosky & K. Rawson (Eds.), The Cambridge handbook of cognition and education (pp. 587–618). Cambridge: Cambridge Press.