1. Ai, H., Litman, D.J., Forbes-Riley, K., Rotaru, M., Tetreault, J., & Purandare, A. (2006). Using System and User Performance Features to Improve Emotion Detection in Spoken Tutoring Dialogs. INTERSPEECH 2006, pp. 797–800.
2. Arroyo, I., Woolf, B.P., Burelson, W., Muldner, K., Rai, D., & Tai, M. (2014). A Multimedia Adaptive Tutoring System for Mathematics that Addresses Cognition, Metacognition and Affect. Int. J. Artif. Intell. Educ. (24), (pp. 387–426): Springer.
3. Baker, R.S.J.D., Gowda, S., Wixon, M., Kalka, J., Wagner, A., Salvi, A., Aleven, V., Kusbit, G., Ocumpaugh, J., & Rossi, L. (2012). Towards Sensor-Free Affect Detection in Cognitive Tutor Algebra. Proceedings of the 5th International Conference on Educational Data Mining (EDM 2012), pp. 126–133.
4. Barandela, R., Valdovinos, R., Sn̈chez, J., & Ferri, F. (2004). The imbalanced training sample problem: Under or over sampling? Structural, Syntactic, and Statistical Pattern Recognition, Springer, Lecture Notes in Computer Science, pp. 806–814.
5. Boser, B.E., Guyon, I., & Vapnik, V. (1992). A training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, (pp. 144–152): ACM Press.