1. Agrawal, R., Gollapudi, S., Kannan, A., & Kenthapadi, K. (2014). Study navigator: an algorithmically generated aid for learning from electronic textbooks. Journal of Educational Data Mining, 6(1).
2. Alzaidy, R., Caragea, C., & Giles, C. L. (2019). Bi-lstm-crf sequence labeling for keyphrase extraction from scholarly documents. In The world wide web conference, WWW ’19 (pp. 2551–2557). New York: Association for Computing Machinery.
3. Augenstein, I., Das, M., Riedel, S., Vikraman, L., & McCallum, A. (2017). Semeval 2017 task 10: Scienceie - extracting keyphrases and relations from scientific publications. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017) (pp. 546–555): Association for Computational Linguistics.
4. Bhuiyan, S., Greer, J., & McCalla, G. (1992). Learning recursion trrough the use of mental model-based programming environment. In Frasson, C., Gauthier, G., & McCalla, G. (Eds.) Second International Conference, ITS’92 (pp. 50–57, artc121): Springer.
5. Bougouin, A., Boudin, F., & Daille, B. (2013). Topicrank: Graph-based topic ranking for keyphrase extraction. In Proceedings of the Sixth International Joint Conference on Natural Language Processing (pp. 543–551). Nagoya: Asian Federation of Natural Language Processing.