Abstract
AbstractArtificial Intelligence (AI) is attracting a great deal of attention and it is important to investigate the public perceptions of AI and their impact on the perceived credibility of research evidence. In the literature, there is evidence that people overweight research evidence when framed in neuroscience findings. In this paper, we present the findings of the first investigation of the impact of an AI frame on the perceived credibility of educational research evidence. In an experimental study, we allocated 605 participants including educators to one of three conditions in which the same educational research evidence was framed within one of: AI, neuroscience, or educational psychology. The results demonstrate that when educational research evidence is framed within AI research, it is considered as less credible in comparison to when it is framed instead within neuroscience or educational psychology. The effect is still evident when the subjects’ familiarity with the framing discipline is controlled for. Furthermore, our results indicate that the general public perceives AI to be: less helpful in assisting us to understand how children learn, lacking in adherence to scientific methods, and to be less prestigious compared to neuroscience and educational psychology. Considering the increased use of AI technologies in Educational settings, we argue that there should be significant attempts to recover the public image of AI being less scientifically robust and less prestigious than educational psychology and neuroscience. We conclude the article suggesting that AI in Education community should attempt to be more actively engaged with key stakeholders of AI and Education to help mitigate such effects.
Funder
University College London - Grand Challenges on Transformative Technologies
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Education
Reference62 articles.
1. Appelman, A., & Sundar, S. S. (2016). Measuring message credibility: Construction and validation of an exclusive scale. Journalism & Mass Communication Quarterly, 93(1), 59–79. https://doi.org/10.1177/1077699015606057.
2. Ariely, D., & Berns, G. S. (2010). Neuromarketing: The hope and hype of neuroimaging in business. Nature Reviews Neuroscience, 11, 284–292. https://doi.org/10.1038/nrn2795.
3. Brynjolfsson, E., & Mcafee, A. (2014). The second machine age: Work, Progress, and prosperity in a time of brilliant technologies, MIT Press.
4. BSA Intelligence (2015). One in three believe that the rise of artificial intelligence is a threat to humanity.
5. Casler, K., Bickel, L., & Hackett, E. (2013). Separate but equal? A comparison of participants and data gathered via Amazon’s MTurk, social media, and face-to-face behavioral testing. Computers in Human Behavior, 29, 2156–2160. https://doi.org/10.1016/j.chb.2013.05.009.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献