Reasoning about responsibility in autonomous systems: challenges and opportunities

Author:

Yazdanpanah Vahid,Gerding Enrico H.,Stein Sebastian,Dastani Mehdi,Jonker Catholijn M.,Norman Timothy J.,Ramchurn Sarvapali D.

Abstract

AbstractEnsuring the trustworthiness of autonomous systems and artificial intelligence is an important interdisciplinary endeavour. In this position paper, we argue that this endeavour will benefit from technical advancements in capturing various forms of responsibility, and we present a comprehensive research agenda to achieve this. In particular, we argue that ensuring the reliability of autonomous system can take advantage of technical approaches for quantifying degrees of responsibility and for coordinating tasks based on that. Moreover, we deem that, in certifying the legality of an AI system, formal and computationally implementable notions of responsibility, blame, accountability, and liability are applicable for addressing potential responsibility gaps (i.e. situations in which a group is responsible, but individuals’ responsibility may be unclear). This is a call to enable AI systems themselves, as well as those involved in the design, monitoring, and governance of AI systems, to represent and reason about who can be seen as responsible in prospect (e.g. for completing a task in future) and who can be seen as responsible retrospectively (e.g. for a failure that has already occurred). To that end, in this work, we show that across all stages of the design, development, and deployment of trustworthy autonomous systems (TAS), responsibility reasoning should play a key role. This position paper is the first step towards establishing a road map and research agenda on how the notion of responsibility can provide novel solution concepts for ensuring the reliability and legality of TAS and, as a result, enables an effective embedding of AI technologies into society.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Human-Computer Interaction,Philosophy

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3