Sensorimotor delays in tracking may be compensated by negative feedback control of motion-extrapolated position

Author:

Parker Maximilian G.ORCID,Weightman Andrew P.,Tyson Sarah F.,Abbott Bruce,Mansell Warren

Abstract

AbstractSensorimotor delays dictate that humans act on outdated perceptual information. As a result, continuous manual tracking of an unpredictable target incurs significant response delays. However, no such delays are observed for repeating targets such as the sinusoids. Findings of this kind have led researchers to claim that the nervous system constructs predictive, probabilistic models of the world. However, a more parsimonious explanation is that visual perception of a moving target position is systematically biased by its velocity. The resultant extrapolated position could be compared with the cursor position and the difference canceled by negative feedback control, compensating sensorimotor delays. The current study tested whether a position extrapolation model fit human tracking of sinusoid (predictable) and pseudorandom (less predictable) targets better than the non-biased position control model, Twenty-eight participants tracked these targets and the two computational models were fit to the data at 60 fixed loop delay values (simulating sensorimotor delays). We observed that pseudorandom targets were tracked with a significantly greater phase delay than sinusoid targets. For sinusoid targets, the position extrapolation model simulated tracking results more accurately for loop delays longer than 120 ms, thereby confirming its ability to compensate for sensorimotor delays. However, for pseudorandom targets, this advantage arose only after 300 ms, indicating that velocity information is unlikely to be exploited in this way during the tracking of less predictable targets. We conclude that negative feedback control of position is a parsimonious model for tracking pseudorandom targets and that negative feedback control of extrapolated position is a parsimonious model for tracking sinusoidal targets.

Funder

University of Cambridge

Publisher

Springer Science and Business Media LLC

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3