The effect of different depth planes during a manual tracking task in three-dimensional virtual reality space

Author:

Kim Hyeonseok,Koike YasuharuORCID,Choi Woong,Lee Jongho

Abstract

AbstractUnlike ballistic arm movements such as reaching, the contribution of depth information to the performance of manual tracking movements is unclear. Thus, to understand how the brain handles information, we investigated how a required movement along the depth axis would affect behavioral tracking performance, postulating that it would be affected by the amount of depth movement. We designed a visually guided planar tracking task that requires movement on three planes with different depths: a fronto-parallel plane called ROT (0), a sagittal plane called ROT (90), and a plane rotated by 45° with respect to the sagittal plane called ROT (45). Fifteen participants performed a circular manual tracking task under binocular and monocular visions in a three-dimensional (3D) virtual reality space. As a result, under binocular vision, ROT (90), which required the largest depth movement among the tasks, showed the greatest error in 3D. Similarly, the errors (deviation from the target path) on the depth axis revealed significant differences among the tasks. Under monocular vision, significant differences in errors were observed only on the lateral axis. Moreover, we observed that the errors in the lateral and depth axes were proportional to the required movement on these axes under binocular vision and confirmed that the required depth movement under binocular vision determined depth error independent of the other axes. This finding implies that the brain may independently process binocular vision information on each axis. Meanwhile, the required depth movement under monocular vision was independent of performance along the depth axis, indicating an intractable behavior. Our findings highlight the importance of handling depth movement, especially when a virtual reality situation, involving tracking tasks, is generated.

Funder

MEXT | Japan Science and Technology Agency

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3