Abstract
AbstractWe establish asymptotic stability estimates for solutions to evolution problems with singular convection term. Such quantitative estimates provide a measure with respect to the time variable of the distance between the solution to a parabolic problem from the one of the its elliptic stationary counterpart.
Funder
Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics
Reference20 articles.
1. Alvino, A.: Sulla disuguaglianza di Sobolev in spazi di Lorentz. Bollettino della Unione Matematica Italiana A 5(14), 148–156 (1977)
2. Bénilan, P., Brezis, H., Crandall, M.: A semilinear equation in $$L^1({\mathbb{R}}^N)$$. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2(4), 523–555 (1975)
3. Boccardo, L., Orsina, L., Porretta, A.: Some noncoercive parabolic equations with lower order terms in divergence form, Dedicated to Philippe Bénilan. J. Evol. Equ. 3(3), 407–418 (2003)
4. Boccardo, L.: Dirichlet problems with singular convection terms and applications. J. Differ. Equ. 258(7), 2290–2314 (2015)
5. Cardaliaguet, P., Lasry, J.-M., Lions, P.-L., Porretta, A.: Long time average of mean field games. Netw. Heterog. Media 7(2), 279–301 (2012)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献