microRNAs shape social immunity: a potential target for biological control of the termite Reticulitermes chinensis

Author:

Liu Long,Yan Feng-Ming,Zhao Chen-Chen,Su Li-Juan,Huang Qiu-Ying,Tang Qing-BoORCID

Abstract

AbstractEusocial insects can employ various behavioural and physiological disease defences to avoid, resist and tolerate pathogen infections in their closely related and packed colonies, termed social immunity. Recent studies have shown that several molecules serve insect social immunity, including chemical odours, insect venoms, immune-related proteins, etc. However, whether and how microRNAs (miRNAs), whose precursors are processed by Dicer-1, drive social immunity in insect colonies is still unknown. Here, we used a ‘host–pathogen’ system (host: Reticulitermes chinensis; pathogen: Metarhizium anisopliae) to explore the impact of miRNAs on social immunity in termite colonies. We found that RNAi-mediated silencing of Dicer-1 led to decreased miRNA concentration, significantly inhibited carbohydrate and energy metabolism and affected other life processes, such as the immune response and oxidation–reduction reactions, in whole body of the termite. In behavioural defence, silencing Dicer-1 significantly diminished defensive social behaviours such as locomotion, grooming, cannibalism and burial in termite groups when encountering fungal contamination. In physiological defence, Dicer-1 silencing and miR-71-5 stimulation resulted in significantly decreased antifungal activities of termites. Furthermore, both Dicer-1-silenced and miR-71-5 stimulant-treated termite groups exhibited a high level of mortality during fungal contamination. Our findings demonstrated the important role of miRNAs in shaping social immunity in termite colonies, providing insights necessary to understand the potential mechanisms underlying behavioural and physiological disease defences in insects and hence laying the groundwork for miRNA-based pest control.

Funder

Sicence and Technology Planning Project of Henan Province of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Insect Science,Ecology, Evolution, Behavior and Systematics,Plant Science,Ecology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3