Trace singularities in obstacle scattering and the Poisson relation for the relative trace

Author:

Fang Yan-Long,Strohmaier Alexander

Abstract

AbstractWe consider the case of scattering by several obstacles in $${\mathbb {R}}^d$$ R d , $$d \ge 2$$ d 2 for the Laplace operator $$\Delta $$ Δ with Dirichlet boundary conditions imposed on the obstacles. In the case of two obstacles, we have the Laplace operators $$\Delta _1$$ Δ 1 and $$\Delta _2$$ Δ 2 obtained by imposing Dirichlet boundary conditions only on one of the objects. The relative operator $$g(\Delta ) - g(\Delta _1) - g(\Delta _2) + g(\Delta _0)$$ g ( Δ ) - g ( Δ 1 ) - g ( Δ 2 ) + g ( Δ 0 ) was introduced in Hanisch, Waters and one of the authors in (A relative trace formula for obstacle scattering. arXiv:2002.07291, 2020) and shown to be trace-class for a large class of functions g, including certain functions of polynomial growth. When g is sufficiently regular at zero and fast decaying at infinity then, by the Birman–Krein formula, this trace can be computed from the relative spectral shift function $$\xi _\mathrm {rel}(\lambda ) = -\frac{1}{\pi } {\text {Im}}(\Xi (\lambda ))$$ ξ rel ( λ ) = - 1 π Im ( Ξ ( λ ) ) , where $$\Xi (\lambda )$$ Ξ ( λ ) is holomorphic in the upper half-plane and fast decaying. In this paper we study the wave-trace contributions to the singularities of the Fourier transform of $$\xi _\mathrm {rel}$$ ξ rel . In particular we prove that $${\hat{\xi }}_\mathrm {rel}$$ ξ ^ rel is real-analytic near zero and we relate the decay of $$\Xi (\lambda )$$ Ξ ( λ ) along the imaginary axis to the first wave-trace invariant of the shortest bouncing ball orbit between the obstacles. The function $$\Xi (\lambda )$$ Ξ ( λ ) is important in the physics of quantum fields as it determines the Casimir interactions between the objects.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical aspects of Casimir energy computation in acoustic scattering;Computers & Mathematics with Applications;2024-09

2. Dimensional reduction formulae for spectral traces and Casimir energies;Letters in Mathematical Physics;2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3