Abstract
AbstractThis short letter considers the case of acoustic scattering by several obstacles in $$\mathbb {R}^{d+r}$$
R
d
+
r
for $$r,d \ge 1$$
r
,
d
≥
1
of the form $$\Omega \times \mathbb {R}^r$$
Ω
×
R
r
, where $$\Omega $$
Ω
is a smooth bounded domain in $$\mathbb {R}^d$$
R
d
. As a main result, a von Neumann trace formula for the relative trace is obtained in this setting. As a special case, we obtain a dimensional reduction formula for the Casimir energy for the massive and massless scalar fields in this configuration $$\Omega \times \mathbb {R}^r$$
Ω
×
R
r
per unit volume in $$\mathbb {R}^r$$
R
r
.
Funder
Gottfried Wilhelm Leibniz Universität Hannover
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Birman, M.Š, Kreĭn, M.G.: On the theory of wave operators and scattering operators. Dokl. Akad. Nauk SSSR 144, 475–478 (1962)
2. Carron, G.: Déterminant relatif et la fonction xi. Am. J. Math. 124(2), 307–352 (2002)
3. Emig, T., Jaffe, R.L.: Casimir forces between arbitrary compact objects. J. Phys. A Math. Theor. 41(16), 164001 (2008)
4. Emig, T., Graham, N., Jaffe, R.L., Kardar, M.: Casimir Forces between arbitrary compact objects. Phys. Rev. Lett. 99(17), 170403 (2007)
5. Fang, Y., Strohmaier, A.: A mathematical analysis of Casimir interactions I: the scalar field. Ann. Henri Poincaré 23, 1399–1449 (2022)