1. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36(1,2), 105–139 (1999)
2. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: Proc. 7th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining KDD 2001, pp. 245–250. ACM Press, New York (2001)
3. Blake C.L., Keogh, E., Merz, C.J.: UCI repository of machine learning databases. Dept. of Information and Computer Science, University of California, Irvine, CA (1999),
http://www.ics.uci.edu/~mlearn/MLRepository.html
4. Breiman, L.: Bias, Variance, and Arcing Classifiers, Tech. Report 486, Statistics Dept., University of California, Berkeley, USA (1996)
5. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)