U.S. Unemployment Rate Prediction by Economic Indices in the COVID-19 Pandemic Using Neural Network, Random Forest, and Generalized Linear Regression

Author:

Zhao Zichen1,Hou Guanzhou2

Affiliation:

1. Yale University, USA

2. Johns Hopkins University, USA

Abstract

Artificial neural network (ANN) has been showing its superior capability of modeling and prediction. Neural network model is capable of incorporating high dimensional data, and the model is significantly complex statistically. Sometimes, the complexity is treated as a Blackbox. However, due to the model complexity, the model is capable of capture and modeling an extensive number of patterns, and the prediction power is much stronger than traditional statistical models. Random forest algorithm is a combination of classification and regression trees, using bootstrap to randomly train the model from a set of data (called training set) and test the prediction by a testing set. Random forest has high prediction speed, moderate variance, and does not require any rescaling or transformation of the dataset. This study validates the relationship between the U.S. unemployment rate and economic indices during the COVID-19 pandemic and constructs three different predictive modeling for unemployment rate by economic indices through neural network, random forest, and generalized linear regression model.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3