An enhanced approach for sentiment analysis based on meta-ensemble deep learning

Author:

Kora Rania,Mohammed Ammar

Abstract

AbstractSentiment analysis, commonly known as “opinion mining,” aims to identify sentiment polarities in opinion texts. Recent years have seen a significant increase in the acceptance of sentiment analysis by academics, businesses, governments, and several other organizations. Numerous deep-learning efforts have been developed to effectively handle more challenging sentiment analysis problems. However, the main difficulty with deep learning approaches is that they require a lot of experience and hard work to tune the optimal hyperparameters, making it a tedious and time-consuming task. Several recent research efforts have attempted to solve this difficulty by combining the power of ensemble learning and deep learning. Many of these efforts have concentrated on simple ensemble techniques, which have some drawbacks. Therefore, this paper makes the following contributions: First, we propose a meta-ensemble deep learning approach to improve the performance of sentiment analysis. In this approach, we train and fuse baseline deep learning models using three levels of meta-learners. Second, we propose the benchmark dataset “Arabic-Egyptian Corpus 2” as an extension of a previous corpus. The corpus size has been increased by 10,000 annotated tweets written in colloquial Arabic on various topics. Third, we conduct several experiments on six benchmark datasets of sentiment analysis in different languages and dialects to evaluate the performance of the proposed meta-ensemble deep learning approach. The experimental results reveal that the meta-ensemble approach effectively outperforms the baseline deep learning models. Also, the experiments reveal that meta-learning improves performance further when the probability class distributions are used to train the meta-learners.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Human-Computer Interaction,Media Technology,Communication,Information Systems

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3