LexiSNTAGMM: an unsupervised framework for sentiment classification in data from distinct domains, synergistically integrating dictionary-based and machine learning approaches
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s13278-024-01268-z.pdf
Reference84 articles.
1. Abid F, Alam M, Yasir M, Li C (2019) Sentiment analysis through recurrent variants latterly on convolutional neural network of Twitter. Futur Gener Comput Syst 95:292–308. https://doi.org/10.1016/j.future.2018.12.018
2. Akhtar MS, Ekbal A, Cambria E (2020) How intense are you? Predicting intensities of emotions and sentiments using stacked ensemble [Application Notes]. IEEE Comput Intell Mag 15(1):64–75. https://doi.org/10.1109/MCI.2019.2954667
3. AminiMotlagh M, Shahhoseini HS, Fatehi N (2023) A reliable sentiment analysis for classification of tweets in social networks. Soc Netw Anal Min 13(1):1–11. https://doi.org/10.1007/s13278-022-00998-2
4. Bahrawi N (2019) Sentiment analysis using random forest algorithm-online social media based. J Inf Technol Util 2(2):29. https://doi.org/10.30818/jitu.2.2.2695
5. Basiri M, Nilchi A, Ghassem-Aghaee N (2014) A framework for sentiment analysis in persian. Open Trans Inf Process 1(3):1–14. https://doi.org/10.15764/otip.2014.03001
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Meta-learning triplet contrast network for few-shot text classification;Knowledge-Based Systems;2024-11
2. Comprehensive review and comparative analysis of transformer models in sentiment analysis;Knowledge and Information Systems;2024-09-06
3. A Hybrid Hierarchical Mathematical Heuristic Solution of Sparse Algebraic Equations in Sentiment Analysis;Information;2024-08-23
4. Probabilistic temporal semantic graph: a holistic framework for event detection in twitter;Knowledge and Information Systems;2024-08-22
5. Prediction of 30-day mortality for ICU patients with Sepsis-3;BMC Medical Informatics and Decision Making;2024-08-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3