Calculating the Rotor Between Conformal Objects

Author:

Lasenby J.ORCID,Hadfield H.ORCID,Lasenby A.ORCID

Abstract

Abstract In this paper we will address the problem of recovering covariant transformations between objects—specifically; lines, planes, circles, spheres and point pairs. Using the covariant language of conformal geometric algebra (CGA), we will derive such transformations in a very simple manner. In CGA, rotations, translations, dilations and inversions can be written as a single rotor, which is itself an element of the algebra. We will show that the rotor which takes a line to a line (or plane to a plane etc) can easily be formed and we will investigate the nature of the rotors formed in this way. If we can recover the rotor between one object and another of the same type, a useable metric which tells us how close one line (plane etc) is to another, can be a function of how close this rotor is to the identity. Using these ideas, we find that we can define metrics for a number of common problems, specifically recovering the transformation between sets of noisy objects.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3