Niche differentiation of Mucoromycotinian and Glomeromycotinian arbuscular mycorrhizal fungi along a 2-million-year soil chronosequence

Author:

Mansfield Thomas M.,Albornoz Felipe E.,Ryan Megan H.,Bending Gary D.,Standish Rachel J.

Abstract

AbstractCurrent literature suggests ecological niche differentiation between co-occurring Mucoromycotinian arbuscular mycorrhizal fungi (M-AMF) and Glomeromycotinian AMF (G-AMF), but experimental evidence is limited. We investigated the influence of soil age, water availability (wet and dry), and plant species (native Microlaena stipoides and exotic Trifolium subterraneum) on anatomical root colonisation and DNA profiles of M-AMF and G-AMF under glasshouse conditions. We grew seedlings of each species in soils collected from the four stages of a soil chronosequence, where pH decreases from the youngest to oldest stages, and phosphorus (P) is low in the youngest and oldest, but high in the intermediate stages. We scored the percentage of root length colonised and used DNA metabarcoding to profile fungal richness and community composition associated with treatment combinations. Soil age, water availability, and plant species were important influencers of root colonisation, although no M-AMF were visible following staining of M. stipoides roots. Soil age and host plant influenced fungal richness and community composition. However, response to soil age, potential host species, and water availability differed between M-AMF and G-AMF. Root colonisation of T. subterraneum by M-AMF and G-AMF was inversely correlated with soil P level. Community composition of M-AMF and G-AMF was structured by soil age and, to a lesser extent, plant species. Richness of M-AMF and G-AMF was negatively, and positively, correlated with available P, respectively. These findings are experimental evidence of ecological niche differentiation of M-AMF and G-AMF and invite further exploration into interactive effects of abiotic and biotic factors on their communities along successional trajectories.

Funder

Australian Research Council Discovery Project

UK Natural Encironment Research Council Project

Murdoch University

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3