Common soil history is more important than plant history for arbuscular mycorrhizal community assembly in an experimental grassland diversity gradient

Author:

Albracht CynthiaORCID,Solbach Marcel DominikORCID,Hennecke JustusORCID,Bassi LeonardoORCID,van der Ploeg Geert RoelofORCID,Eisenhauer NicoORCID,Weigelt AlexandraORCID,Buscot FrançoisORCID,Heintz-Buschart AnnaORCID

Abstract

AbstractThe relationship between biodiversity and ecosystem functioning strengthens with ecosystem age. However, the interplay between the plant diversity - ecosystem functioning relationship and Glomeromycotinian arbuscular mycorrhizal fungi (AMF) community assembly has not yet been scrutinized in this context, despite AMF’s role in plant survival and niche exploration. We study the development of AMF communities by disentangling soil- and plant-driven effects from calendar year effects. Within a long-term grassland biodiversity experiment, the pre-existing plant communities of varying plant diversity were re-established as split plots with combinations of common plant and soil histories: split plots with neither common plant nor soil history, with only soil but no plant history, and with both common plant and soil history. We found that bulk soil AMF communities were primarily shaped by common soil history, and additional common plant history had little effect. Further, the steepness of AMF diversity and plant diversity relationship did not strengthen over time, but AMF community evenness increased with common history. Specialisation of AMF towards plant species was low throughout, giving no indication of AMF communities specialising or diversifying over time. The potential of bulk soil AMF as mediators of variation in plant and microbial biomass over time and hence as drivers of biodiversity and ecosystem relationships was low. Our results suggest that soil processes may be key for the build-up of plant community-specific mycorrhizal communities with likely feedback effects on ecosystem productivity, but the plant-available mycorrhizal pool in bulk soil itself does not explain the strengthening of biodiversity and ecosystem relationships over time.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3