Treatment with a β-2-adrenoceptor agonist stimulates glucose uptake in skeletal muscle and improves glucose homeostasis, insulin resistance and hepatic steatosis in mice with diet-induced obesity

Author:

Kalinovich Anastasia,Dehvari Nodi,Åslund Alice,van Beek Sten,Halleskog Carina,Olsen Jessica,Forsberg Elisabete,Zacharewicz Evelyn,Schaart Gert,Rinde Mia,Sandström Anna,Berlin Roger,Östenson Claes-GöranORCID,Hoeks JorisORCID,Bengtsson Tore

Abstract

Abstract Aims/hypothesis Chronic stimulation of β2-adrenoceptors, opposite to acute treatment, was reported to reduce blood glucose levels, as well as to improve glucose and insulin tolerance in rodent models of diabetes by essentially unknown mechanisms. We recently described a novel pathway that mediates glucose uptake in skeletal muscle cells via stimulation of β2-adrenoceptors. In the current study we further explored the potential therapeutic relevance of β2-adrenoceptor stimulation to improve glucose homeostasis and the mechanisms responsible for the effect. Methods C57Bl/6N mice with diet-induced obesity were treated both acutely and for up to 42 days with a wide range of clenbuterol dosages and treatment durations. Glucose homeostasis was assessed by glucose tolerance test. We also measured in vivo glucose uptake in skeletal muscle, insulin sensitivity by insulin tolerance test, plasma insulin levels, hepatic lipids and glycogen. Results Consistent with previous findings, acute clenbuterol administration increased blood glucose and insulin levels. However, already after 4 days of treatment, beneficial effects of clenbuterol were manifested in glucose homeostasis (32% improvement of glucose tolerance after 4 days of treatment, p < 0.01) and these effects persisted up to 42 days of treatment. These favourable metabolic effects could be achieved with doses as low as 0.025 mg kg−1 day−1 (40 times lower than previously studied). Mechanistically, these effects were not due to increased insulin levels, but clenbuterol enhanced glucose uptake in skeletal muscle in vivo both acutely in lean mice (by 64%, p < 0.001) as well as during chronic treatment in diet-induced obese mice (by 74%, p < 0.001). Notably, prolonged treatment with low-dose clenbuterol improved whole-body insulin sensitivity (glucose disposal rate after insulin injection increased up to 1.38 ± 0.31%/min in comparison with 0.15 ± 0.36%/min in control mice, p < 0.05) and drastically reduced hepatic steatosis (by 40%, p < 0.01) and glycogen (by 23%, p < 0.05). Conclusions/interpretation Clenbuterol improved glucose tolerance after 4 days of treatment and these effects were maintained for up to 42 days. Effects were achieved with doses in a clinically relevant microgram range. Mechanistically, prolonged treatment with a low dose of clenbuterol improved glucose homeostasis in insulin resistant mice, most likely by stimulating glucose uptake in skeletal muscle and improving whole-body insulin sensitivity as well as by reducing hepatic lipids and glycogen. We conclude that selective β2-adrenergic agonists might be an attractive potential treatment for type 2 diabetes. This remains to be confirmed in humans.

Funder

Diabetesfonden

Magnus Bergvalls Stiftelse

Vetenskapsrådet

Stiftelsen Olle Engkvist Byggmästare

Carl Tryggers Stiftelse för Vetenskaplig Forskning

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3