Author:
Balaj Mircea,Castellani Marco,Giuli Massimiliano
Abstract
AbstractEquilibrium problems provide a mathematical framework which includes optimization, variational inequalities, fixed point and saddle point problems, and noncooperative games as particular cases. In this paper sufficient conditions for the existence of solutions of an equilibrium problem are given by weakening the assumption of quasiconvexity of the involved equilibrium bifunction. The existence of solutions is established both in presence of compactness of the feasible set as well with a coercivity assumption. The results are obtained in an infinite dimensional setting, and they are based on the so called finite solvability property which is weaker than the recently introduced finite intersection property and in turn, weaker than most common cyclic and proper quasimonotonicity. Some examples are presented to illustrate the various cases in which other existence results for equilibrium problems do not apply. Finally, applications to the solution of quasiequilibrium problems, quasioptimization problems and generalized quasivariational inequalities are discussed.
Funder
Università degli Studi dell’Aquila
Publisher
Springer Science and Business Media LLC
Subject
Management Information Systems,Business, Management and Accounting (miscellaneous),Management Science and Operations Research,Statistics, Probability and Uncertainty
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献