Abstract
AbstractThe concept of adjusted sublevel set for a quasiconvex function was introduced by Aussel and Hadjisavvas who proved the local existence of a norm-to-weak$$^*$$
∗
upper semicontinuous base-valued submap of the normal operator associated with the adjusted sublevel set. When the space is finite-dimensional, a globally defined upper semicontinuous base-valued submap is obtained by taking the intersection of the unit sphere, which is compact, with the normal operator, which is closed. Unfortunately, this technique does not work in the infinite-dimensional case. We propose a partition of unity technique to overcome this problem in Banach spaces. An application is given to a quasiconvex quasioptimization problem through the use of a new existence result for generalized quasivariational inequalities which is based on the Schauder fixed point theorem.
Funder
Università degli Studi dell’Aquila
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Management Science and Operations Research,Control and Optimization
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献