Detection of glucosamine as a marker for Aspergillus niger: a potential screening method for fungal infections

Author:

Allison Christopher L.,Moskaluk Alex,VandeWoude Sue,Reynolds Melissa M.

Abstract

AbstractSeveral species of fungus from the genus Aspergillus are implicated in pulmonary infections in immunocompromised patients. Broad screening methods for fungal infections are desirable, as cultures require a considerable amount of time to provide results. Herein, we developed degradation and detection methods to produce and detect D-glucosamine (GlcN) from Aspergillus niger, a species of filamentous fungus. Ultimately, these techniques hold the potential to contribute to the diagnosis of pulmonary fungal infections in immunocompromised patients. In the following studies, we produced GlcN from fungal-derived chitin to serve as a marker for Aspergillus niger. To accomplish this, A. niger cells were lysed and subjected to a hydrochloric acid degradation protocol. Products were isolated, reconstituted in aqueous solutions, and analyzed using hydrophilic interaction liquid chromatography (HILIC) in tandem with electrospray ionization time-of-flight mass spectrometry. Our results indicated that GlcN was produced from A. niger. To validate these results, products obtained via fungal degradation were compared to products obtained from the degradation of two chitin polymers. The observed retention times and mass spectral extractions provided a two-step validation confirming that GlcN was produced from fungal-derived chitin. Our studies qualitatively illustrate that GlcN can be produced from A. niger; applying these methods to a more diverse range of fungi offers the potential to render a broad screening method for fungal detection pertinent to diagnosis of fungal infections. Graphical abstract

Funder

Foundation for the National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3