Current and future requirements to industrial analytical infrastructure—part 1: process analytical laboratories

Author:

Eisen Kristina,Eifert Tobias,Herwig Christoph,Maiwald Michael

Abstract

AbstractThe competitiveness of the chemical and pharmaceutical industry is based on ensuring the required product quality while making optimum use of plants, raw materials, and energy. In this context, effective process control using reliable chemical process analytics secures global competitiveness. The setup of those control strategies often originate in process development but need to be transferable along the whole product life cycle. In this series of two contributions, we want to present a combined view on the future of PAT (process analytical technology), which is projected in smart labs (part 1) and smart sensors (part 2). In laboratories and pilot plants, offline chemical analytical methods are frequently used, where inline methods are also used in production. Here, a transferability from process development to the process in operation would be desirable. This can be obtained by establishing PAT methods for production already during process development or scale-up. However, the current PAT (Bakeev 2005, Org Process Res 19:3–62; Simon et al. 2015, Org Process Res Dev 19:3–62) must become more flexible and smarter. This can be achieved by introducing digitalization-based knowledge management, so that knowledge from product development enables and accelerates the integration of PAT. Conversely, knowledge from the production process will also contribute to product and process development. This contribution describes the future role of the laboratory and develops requirements therefrom. In part 2, we examine the future functionality as well as the ingredients of a smart sensor aiming to eventually fuel full PAT functionality—also within process development or scale-up facilities (Eifert et al. 2020, Anal Bioanal Chem).

Funder

Bundesanstalt für Materialforschung und -prüfung (BAM)

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

Reference12 articles.

1. Bakeev KA. Process analytical technology. Oxford: Wiley-Blackwell; 2005. Org Process Res. 19: 3–62.

2. Maiwald M. Prozessanalytik als Instrument des Informationsmanagements in der Chemischen und Pharmazeutischen Industrie. Chem Ing Technik. 2010;82:383–90.

3. DIN SPEC 91345:2016-04 Reference Architecture Model Industrie 4.0 (RAMI4.0). – https://www.beuth.de/en/technical-rule/din-spec-91345/250940128. Accessed 23.12.2019. The Reference Architectural Model RAMI 4.0 and the Industrie 4.0 Component. 2015. ZVEI. – https://www.zvei.org/en/subjects/industrie-4-0/the-reference-architectural-model-rami-40-and-the-industrie-40-component/. Accessed 23.12.2019.

4. White Paper: Module-Based Production in the Process Industry – Effects on Automation in the “Industrie 4.0” Environment. 2015. White Paper. ZVEI - Zentralverband Elektrotechnik- und Elektronikindustrie e. V. https://www.zvei.org/en/press-media/publications/white-paper-module-based-production-in-the-process-industry/. Accessed 23.12.2019.

5. Hoffmeister, M. 2015. Industrie 4.0: Die Industrie 4.0-Komponente. Flyer des ZVEI - Zentralverband Elektrotechnik- und Elektronikindustrie e. V. zur Hannovermesse 2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3