Comparison of LC-ESI, DART, and ASAP for the analysis of oligomers migration from biopolymer food packaging materials in food (simulants)

Author:

Osorio Jazmín,Aznar MargaritaORCID,Nerín Cristina,Elliott Christopher,Chevallier Olivier

Abstract

Abstract Biopolymers based on polylactic acid (PLA) and starch have numerous advantages, such as coming from renewable sources or being compostable, though they can have deficiencies in mechanical properties, and for this reason, polyester resins are occasionally added to them in order to improve their properties. In this work, migration from a PLA sample and from another starch-based biopolymer to three different food simulants was studied. Attention was focused on the determination of oligomers. The analysis was first performed by ultraperformance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF–MS), which allowed the identification of the oligomers present in migration. Then, the samples were analyzed by two ambient desorption/ionization techniques directly coupled to mass spectrometry (ADI), direct analysis in real-time coupled to standardized voltage and pressure (DART-MS) and atmospheric pressure solids analysis probe (ASAP-MS). These methodologies were able to detect simultaneously the main oligomers migrants and their adducts in a very rapid and effective way. Nineteen different polyester oligomers, fourteen linear and five cyclic, composed of different combinations of adipic acid [AA], propylene glycol [PG], dipropylene glycol [DPG], 2,2-dibutyl-1,3-propanediol [DBPG], or isobutanol [i-BuOH] were detected in migration samples from PLA. In migration samples from starch-based biopolymer, fourteen oligomers from poly(butylene adipate co-terephthalate) polyester (PBAT) were identified, twelve cyclic and two linear. The results from ADI techniques showed that they are a very promising alternative tool to assess the safety and legal compliance of food packaging materials. Graphical abstract

Funder

Gobierno de Aragón y Fondo Social Europeo

MINECO

Universidad de Zaragoza

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3