Lipase-catalysed changes in essential oils revealed by comprehensive two-dimensional gas chromatography

Author:

Amaral Michelle S. S.,Hearn Milton T. W.,Marriott Philip J.

Abstract

AbstractCandida antarctica lipase A (CALA) was applied for the chemo-selective enzymatic transesterification of terpene and phenyl alcohols in 35 different essential oil samples. Comprehensive two-dimensional gas chromatography with mass spectrometry (GC×GC‒MS) analysis enabled the separation and tentative identification of a cohort of 125 compounds, allowing the instant visualisation of the reaction process changes, amid the complex chemical background of the samples. The results indicate that 42 out of 79 alcohols so-identified were fully or partially esterified within 48 h of reaction, with primary alcohols being the substrates of preference of the enzyme (90–100% conversion), followed by secondary alcohols (mostly ~ 80–100% conversion). No significant conversion of tertiary alcohols and phenols was observed using the tested conditions. Overall, the enzyme’s performance was consistent for primary alcohol substrates identified in multiple samples of different compositions. The observed selectivity, efficiency, robustness, scalability (enzyme/substrate working concentration ratio > 1:160), potential reusability, mild reaction conditions, and other factors make this process a greener and more sustainable alternative for industry applications, particularly for the manufacture of novel flavours and fragrances. Graphical Abstract

Funder

Monash University

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3