Greening up the fight against emerging contaminants: algae-based nanoparticles for water remediation

Author:

Premarathna K. S. D.,Lau Sie Yon,Chiong Tung,Show Pau-Loke,Vithanage Meththika,Lam Man Kee

Abstract

AbstractNanoparticles are commonly used for different purposes, including as photocatalysts, biosensors, antibacterial, antifungal, and anticancer agents. Recently, the synthesis of nanoparticles via biological techniques has become popular due to cost efficiency, sustainability, and the least secondary pollutants generation. Plants, algae, and microorganisms are primarily used to synthesize bio-nanoparticles. Algae-based nanoparticles have gained more attention due to their catalytic activity against emerging organic contaminants such as dyes, phenols, and organosulfur compounds. Nevertheless, a systemic evaluation of the potential of algae-based nanoparticles in environmental remediation is yet to be conducted. This paper reviews recent progress in the biosynthesis of algae-based nanoparticles and the potential use of algae-based nanoparticles in environmental remediation. Furthermore, the review examines the factors that affect the properties and behaviors of algae-based nanoparticles. Additionally, the review briefly discusses other medical and industrial applications as well as advantages over physically and chemically synthesized nanoparticles. Challenges associated with the production process and usage of algae-based nanoparticles are also discussed, including the difficulty of predicting the properties of nanoparticles and adapting to large-scale processes. Overall, algae-based nanoparticles have several advantages, including their high stability and surface activity due to the presence of surface functional groups from algae species used for the synthesis of algae-based nanoparticles. However, further research is required to address the knowledge gaps and potential key research areas. Graphical Abstract

Funder

Curtin University, Malaysia

Curtin University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanophycology, the merging of nanoscience into algal research: A review;Ecotoxicology and Environmental Safety;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3