The Green Synthesis of MgO Nano-Flowers Using Rosmarinus officinalis L. (Rosemary) and the Antibacterial Activities against Xanthomonas oryzae pv. oryzae

Author:

Abdallah Yasmine12,Ogunyemi Solabomi Olaitan1,Abdelazez Amro3ORCID,Zhang Muchen1,Hong Xianxian1,Ibrahim Ezzeldin14,Hossain Afsana1,Fouad Hatem15,Li Bin1ORCID,Chen Jianping6ORCID

Affiliation:

1. State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China

2. Department of Plant Pathology, Faculty of Agriculture, Minia University, Minya 61519, Egypt

3. Department of Dairy Microbiology, Animal Production Research Institute, Agriculture Research Centre, Dokki, Giza 12618, Egypt

4. Department of Plant Pathology, Plant Pathology, Research Institute, Agricultural Research Centre, Cairo 12619, Egypt

5. Department of Field Crop Pests, Plant Protection Research Institute, Agricultural Research Centre, Cairo 12619, Egypt

6. Institute of Plant Virology, Ningbo University, Ningbo 315211, China

Abstract

Recently, the use of herbs in the agriculture and food industry has increased significantly. In particular, Rosmarinus officinalis L. extracts have been reported to have strong antibacterial properties, which depend on their chemical composition. The present study displayed a biological method for synthesis of magnesium oxide (MgO) nano-flowers. The nano-flowers are developed without using any catalyst agent. Aqueous Rosemary extract was used to synthesize MgO nano-flowers (MgONFs) in stirring conditions and temperature at 70°C for 4 h. The mixture solution was checked by UV-Vis spectrum to confirm the presence of nanoparticles. The MgO nano-flowers powder was further characterized in this study by the X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. In addition, bacteriological tests indicated that MgO nano-flowers significantly inhibited bacterial growth, biofilm formation, and motility of Xanthomonas oryzae pv. oryzae, which is the causal agent of bacterial blight disease in rice. The electronic microscopic observation showed that bacterial cell death may be mainly due to destroy of cell integrity, resulting in leakage of intracellular content. As recommended, the use of Rosemary extract is an effective and green way to produce the MgO nano-flowers, which can be widely used in agricultural fields to suppress bacterial infection.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3