Abstract
AbstractAir pollution monitoring is constantly increasing, giving more and more attention to its consequences on human health. Since Nitrogen dioxide (NO2) and sulfur dioxide (SO2) are the major pollutants, various models have been developed on predicting their potential damages. Nevertheless, providing precise predictions is almost impossible. In this study, a new hybrid intelligent model based on long short-term memory (LSTM) and multi-verse optimization algorithm (MVO) has been developed to predict and analysis the air pollution obtained from Combined Cycle Power Plants. In the proposed model, long short-term memory model is a forecaster engine to predict the amount of produced NO2 and SO2 by the Combined Cycle Power Plant, where the MVO algorithm is used to optimize the LSTM parameters in order to achieve a lower forecasting error. In addition, in order to evaluate the proposed model performance, the model has been applied using real data from a Combined Cycle Power Plant in Kerman, Iran. The datasets include wind speed, air temperature, NO2, and SO2 for five months (May–September 2019) with a time step of 3-h. In addition, the model has been tested based on two different types of input parameters: type (1) includes wind speed, air temperature, and different lagged values of the output variables (NO2 and SO2); type (2) includes just lagged values of the output variables (NO2 and SO2). The obtained results show that the proposed model has higher accuracy than other combined forecasting benchmark models (ENN-PSO, ENN-MVO, and LSTM-PSO) considering different network input variables.
Graphic abstract
Funder
Università degli Studi di Roma La Sapienza
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Environmental Chemistry,Environmental Engineering,General Business, Management and Accounting,Economics and Econometrics
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献