The Lorentz Transformation in a Fishbowl: A Comment on Cheng and Read’s “Why Not a Sound Postulate?”

Author:

Shanahan DanielORCID

Abstract

AbstractIn support of their contention that it is the absence of a subsisting medium that imbues the speed of light with fundamentality, Bryan Cheng and James Read discuss certain “fishbowl universes” in which physical influences evolve, not at the speed of light, but that of sound. The Lorentz transformation simulated in these sonic universes, which the authors cite from the literature of analogue gravity, is not that of Einstein, for whom an aether was “superfluous”, but that of the earlier relativity of Lorentz and Poincaré, which did suppose such a medium. The authors’ intention is not to argue analogically, but simply to contrast the situation of light with that of sound. However, I argue that these universes are too successful as analogues to support the authors’ case. By reducing Lorentzian relativity to its bare essentials, they provide a compelling demonstration of the viability and explanatory strengths of the earlier theory. They show how a thoroughly wave-theoretic treatment of the elementary particles would explain why all aspects of matter transform in like manner, thereby avoiding a difficulty that was a significant reason for the demise of Lorentzian relativity after 1905. Importantly, these sonic universes suggest a unifying explanation, not only of the Lorentz transformation and de Broglie wave, but of the principle of relativity, which was merely postulated, rather than explained, by Einstein in 1905.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,History and Philosophy of Science,Philosophy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3