A two-vertex theorem for normal tilings

Author:

Domokos Gábor,Horváth Ákos G.ORCID,Regős Krisztina

Abstract

AbstractWe regard a smooth, $$d=2$$ d = 2 -dimensional manifold $$\mathcal {M}$$ M and its normal tiling M, the cells of which may have non-smooth or smooth vertices (at the latter, two edges meet at 180 degrees.) We denote the average number (per cell) of non-smooth vertices by $$\bar{v}^{\star }$$ v ¯ and we prove that if M is periodic then $$\bar{v}^{\star } \ge 2$$ v ¯ 2 . We show the same result for the monohedral case by an entirely different argument. Our theory also makes a closely related prediction for non-periodic tilings. In 3 dimensions we show a monohedral construction with $$\bar{v}^{\star }=0$$ v ¯ = 0 .

Funder

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Soft cells and the geometry of seashells;PNAS Nexus;2024-09

2. An Evolution Model for Polygonal Tessellations as Models for Crack Networks and Other Natural Patterns;Journal of Statistical Physics;2023-07-28

3. Polygonal tessellations as predictive models of molecular monolayers;Proceedings of the National Academy of Sciences;2023-04-11

4. A discrete time evolution model for fracture networks;Central European Journal of Operations Research;2022-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3