Polygonal tessellations as predictive models of molecular monolayers

Author:

Regős Krisztina12,Pawlak Rémy3ORCID,Wang Xing4,Meyer Ernst3,Decurtins Silvio4ORCID,Domokos Gábor12,Novoselov Kostya S.5ORCID,Liu Shi-Xia4ORCID,Aschauer Ulrich3

Affiliation:

1. Department of Morphology and Geometric Modeling, Budapest University of Technology and Economics H-1111 Budapest, Hungary

2. Morphodynamics Research Group, Eötvös Lóránd Research Network and Budapest University of Technology and Economics, H-1111 Budapest, Hungary

3. Department of Physics, University of Basel 4056 Basel, Switzerland

4. Department of Chemistry, Biochemistry and Pharmacy, University of Bern 3012 Bern, Switzerland

5. Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore

Abstract

Molecular self-assembly plays a very important role in various aspects of technology as well as in biological systems. Governed by covalent, hydrogen or van der Waals interactions–self-assembly of alike molecules results in a large variety of complex patterns even in two dimensions (2D). Prediction of pattern formation for 2D molecular networks is extremely important, though very challenging, and so far, relied on computationally involved approaches such as density functional theory, classical molecular dynamics, Monte Carlo, or machine learning. Such methods, however, do not guarantee that all possible patterns will be considered and often rely on intuition. Here, we introduce a much simpler, though rigorous, hierarchical geometric model founded on the mean-field theory of 2D polygonal tessellations to predict extended network patterns based on molecular-level information. Based on graph theory, this approach yields pattern classification and pattern prediction within well-defined ranges. When applied to existing experimental data, our model provides a different view of self-assembled molecular patterns, leading to interesting predictions on admissible patterns and potential additional phases. While developed for hydrogen-bonded systems, an extension to covalently bonded graphene-derived materials or 3D structures such as fullerenes is possible, significantly opening the range of potential future applications.

Funder

Hungarian Research Fund

Hungarian Ministry of Innovation and Technology

Albrecht Science Fellowship

Swiss National Science Foundation

Ministry of Education - Singapore

Royal Society

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3