Export of dietary lipids via emergent insects from eutrophic fishponds

Author:

Fehlinger Lena,Mathieu-Resuge Margaux,Pilecky Matthias,Parmar Tarn Preet,Twining Cornelia W.,Martin-Creuzburg Dominik,Kainz Martin J.ORCID

Abstract

AbstractFishponds, despite being globally abundant, have mainly been considered as food production sites and have received little scientific attention in terms of their ecological contributions to the surrounding terrestrial environment. Emergent insects from fishponds may be important contributors of lipids and essential fatty acids to terrestrial ecosystems. In this field study, we investigated nine eutrophic fishponds in Austria from June to September 2020 to examine how Chlorophyll-a concentrations affect the biomass of emergent insect taxa (i.e., quantity of dietary subsidies; n = 108) and their total lipid and long-chain polyunsaturated fatty acid content (LC-PUFA, i.e., quality of dietary subsidies; n = 94). Chironomidae and Chaoboridae were the most abundant emergent insect taxa, followed by Trichoptera, Ephemeroptera, and Odonata. A total of 1068 kg of emergent insect dry mass were exported from these ponds (65.3 hectares). Chironomidae alone exported 103 kg of total lipids and 9.4 kg of omega-3 PUFA. Increasing Chl-a concentrations were associated with decreasing biomass export and a decrease in total lipid and LC-PUFA export via emergent Chironomidae. The PUFA composition of emergent insect taxa differed significantly from dietary algae, suggesting selective PUFA retention by insects. The export of insect biomass from these eutrophic carp ponds was higher than that previously reported from oligotrophic lakes. However, lower biomass and diversity are exported from the fishponds compared to managed ponds. Nonetheless, our data suggest that fishponds provide crucial ecosystem services to terrestrial consumers by contributing essential dietary nutrients to consumer diets via emergent insects.

Funder

Austrian Science Fund

Deutsche Forschungsgemeinschaft

Danube University Krems University for Continuing Education

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3