Future Changes in Climate over the Arabian Peninsula based on CMIP6 Multimodel Simulations

Author:

Almazroui MansourORCID,Islam M. Nazrul,Saeed Sajjad,Saeed Fahad,Ismail Muhammad

Abstract

AbstractThis paper presents the changes in projected temperature and precipitation over the Arabian Peninsula for the twenty-first century using the Coupled Model Intercomparison Project phase 6 (CMIP6) dataset. The changes are obtained by analyzing the multimodel ensemble from 31 CMIP6 models for the near (2030–2059) and far (2070–2099) future periods, with reference to the base period 1981–2010, under three future Shared Socioeconomic Pathways (SSPs). Observations show that the annual temperature is rising at the rate of 0.63 ˚C decade–1 (significant at the 99% confidence level), while annual precipitation is decreasing at the rate of 6.3 mm decade–1 (significant at the 90% confidence level), averaged over Saudi Arabia. For the near (far) future period, the 66% likely ranges of annual-averaged temperature is projected to increase by 1.2–1.9 (1.2–2.1) ˚C, 1.4–2.1 (2.3–3.4) ˚C, and 1.8–2.7 (4.1–5.8) ˚C under SSP1–2.6, SSP2–4.5, and SSP5–8.5, respectively. Higher warming is projected in the summer than in the winter, while the Northern Arabian Peninsula (NAP) is projected to warm more than Southern Arabian Peninsula (SAP), by the end of the twenty-first century. For precipitation, a dipole-like pattern is found, with a robust increase in annual mean precipitation over the SAP, and a decrease over the NAP. The 66% likely ranges of annual-averaged precipitation over the whole Arabian Peninsula is projected to change by 5 to 28 (–3 to 29) %, 5 to 31 (4 to 49) %, and 1 to 38 (12 to 107) % under SSP1–2.6, SSP2–4.5, and SSP5–8.5, respectively, in the near (far) future. Overall, the full ranges in CMIP6 remain higher than the CMIP5 models, which points towards a higher climate sensitivity of some of the CMIP6 climate models to greenhouse gas (GHG) emissions as compared to the CMIP5. The CMIP6 dataset confirmed previous findings of changes in future climate over the Arabian Peninsula based on CMIP3 and CMIP5 datasets. The results presented in this study will be useful for impact studies, and ultimately in devising future policies for adaptation in the region.

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Economic Geology,Geology,Environmental Science (miscellaneous),Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3