Temperature Changes over the CORDEX-MENA Domain in the 21st Century Using CMIP5 Data Downscaled with RegCM4: A Focus on the Arabian Peninsula

Author:

Almazroui Mansour1ORCID

Affiliation:

1. Center of Excellence for Climate Change Research/Department of Meteorology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

This paper examined the temperature changes from the COordinated Regional climate Downscaling Experiment (CORDEX) over the Middle East and North Africa (MENA) domain called CORDEX-MENA. The focus is on the Arabian Peninsula in the 21st century, using data from three Coupled Model Intercomparison Project Phase 5 (CMIP5) models downscaled by RegCM4, a regional climate model. The analysis includes surface observations along with RegCM4 simulations and changes in threshold based on extreme temperature at the end of the 21st century relative to the base period (1971–2000). Irrespective of the driving CMIP5 models, the RegCM4 simulations show enhanced future temperature changes for RCP8.5 as compared to RCP4.5. The Arabian Peninsula will warm at a faster rate (0.83°C per decade) as compared to the entire domain (0.79°C per decade) for RCP8.5 during the period 2071–2100. Moreover, the number of hot days (Tmax ≥ 50°C) (cold nights: Tmin ≤ 5°C) will increase (decrease) faster in the Arabian Peninsula as compared to the entire domain. This increase (decrease) of hot days (cold nights) will be more prominent in the far future (2071–2100) as compared to the near future (2021–2050) period. Moreover, the future changes in temperature over the main cities in Saudi Arabia are also projected. The RegCM4-based temperature simulation data from two suitable CMIP5 models are recommended as a useful database for further climate-change-related studies.

Funder

NSTIP strategic technologies program

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3