Investigations on PM10, PM2.5, and Their Ratio over the Emirate of Abu Dhabi, United Arab Emirates

Author:

Abuelgasim AbdelgadirORCID,Farahat Ashraf

Abstract

AbstractWorldwide monitoring of ambient outdoor air quality is critical for planning mitigation measures and controls for public safety. Several airborne pollutants are measured and continuously monitored by multiple government environmental agencies. Such pollutants include particulate matter (PM) levels, both PM10 and PM2.5, ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, lead, and volatile organic compounds. However, scientific studies related to air pollution and the temporal variability of PM levels in the United Arab Emirates are limited. This study comprehensively analyzes the spatiotemporal variations in PM10, PM2.5, and the PM2.5/PM10 ratio over the Emirate of Abu Dhabi in the United Arab Emirates during 2017–2018. The PM levels are high during April–September, peaking in July each year, likely because of intense dust and sandstorms; the same levels are low during October–March. Industrial areas have higher annual average PM10 levels (162 μg/m3) compared to urban core areas (132 μg/m3) and suburban areas (131 μg/m3). In general, the values of the PM2.5/PM10 ratio are low ranging between annual averages of 0.29 and 0.49 across the industrial, urban core, and desert/suburban areas. This is a characteristic particular to arid and semi-arid environments owing to the prevalence of high quantities of PM10 leading to a low PM2.5/PM10 ratio. In addition, this low ratio indicates that, within the Emirate of Abu Dhabi, air pollution is primarily driven by natural processes related to sand particle uplift, movement, and deposition rather than by human activities.

Funder

College of Humanities and Social Sciences, United Arab Emirates University

King Fahad University of Petroleum and Minerals

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Economic Geology,Geology,Environmental Science (miscellaneous),Global and Planetary Change

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3