Impact of deep learning reconstruction on intracranial 1.5 T magnetic resonance angiography

Author:

Yasaka Koichiro,Akai Hiroyuki,Sugawara Haruto,Tajima Taku,Akahane Masaaki,Yoshioka Naoki,Kabasawa Hiroyuki,Miyo Rintaro,Ohtomo Kuni,Abe Osamu,Kiryu ShigeruORCID

Abstract

Abstract Purpose The purpose of this study was to evaluate whether deep learning reconstruction (DLR) improves the image quality of intracranial magnetic resonance angiography (MRA) at 1.5 T. Materials and methods In this retrospective study, MRA images of 40 patients (21 males and 19 females; mean age, 65.8 ± 13.2 years) were reconstructed with and without the DLR technique (DLR image and non-DLR image, respectively). Quantitative image analysis was performed by placing regions of interest on the basilar artery and cerebrospinal fluid in the prepontine cistern. We calculated the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for analyses of the basilar artery. Two experienced radiologists evaluated the depiction of structures (the right internal carotid artery, right ophthalmic artery, basilar artery, and right superior cerebellar artery), artifacts, subjective noise and overall image quality in a qualitative image analysis. Scores were compared in the quantitative and qualitative image analyses between the DLR and non-DLR images using Wilcoxon signed-rank tests. Results The SNR and CNR for the basilar artery were significantly higher for the DLR images than for the non-DLR images (p < 0.001). Qualitative image analysis scores (p < 0.003 and p < 0.005 for readers 1 and 2, respectively), excluding those for artifacts (p = 0.072–0.565), were also significantly higher for the DLR images than for the non-DLR images. Conclusion DLR enables the production of higher quality 1.5 T intracranial MRA images with improved visualization of arteries.

Funder

Canon Medical Systems Corporation

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3