Deep Learning-Based High-Resolution Magnetic Resonance Angiography (MRA) Generation Model for 4D Time-Resolved Angiography with Interleaved Stochastic Trajectories (TWIST) MRA in Fast Stroke Imaging

Author:

Kim Bo Kyu1ORCID,You Sung-Hye1ORCID,Kim Byungjun1,Shin Jae Ho1ORCID

Affiliation:

1. Department of Radiology, Anam Hospital, Korea University College of Medicine, #126-1, 5-Ka Anam-dong, Sungbuk ku, Seoul 136-705, Republic of Korea

Abstract

Purpose: The purpose of this study is to improve the qualitative and quantitative image quality of the time-resolved angiography with interleaved stochastic trajectories technique (4D-TWIST-MRA) using deep neural network (DNN)-based MR image reconstruction software. Materials and Methods: A total of 520 consecutive patients underwent 4D-TWIST-MRA for ischemic stroke or intracranial vessel stenosis evaluation. Four-dimensional DNN-reconstructed MRA (4D-DNR) was generated using commercially available software (SwiftMR v.3.0.0.0, AIRS Medical, Seoul, Republic of Korea). Among those evaluated, 397 (76.3%) patients received concurrent time-of-flight MRA (TOF-MRA) to compare the signal-to-noise ratio (SNR), image quality, noise, sharpness, vascular conspicuity, and degree of venous contamination with a 5-point Likert scale. Two radiologists independently evaluated the detection rate of intracranial aneurysm in TOF-MRA, 4D-TWIST-MRA, and 4D-DNR in separate sessions. The other 123 (23.7%) patients received 4D-TWIST-MRA due to a suspicion of acute ischemic stroke. The confidence level and decision time for large vessel occlusion were evaluated in these patients. Results: In qualitative analysis, 4D-DNR demonstrated better overall image quality, sharpness, vascular conspicuity, and noise reduction compared to 4D-TWIST-MRA. Moreover, 4D-DNR exhibited a higher SNR than 4D-TWIST-MRA. The venous contamination and aneurysm detection rates were not significantly different between the two MRA images. When compared to TOF-MRA, 4D-CE-MRA underestimated the aneurysm size (2.66 ± 0.51 vs. 1.75 ± 0.62, p = 0.029); however, 4D-DNR showed no significant difference in size compared to TOF-MRA (2.66 ± 0.51 vs. 2.10 ± 0.41, p = 0.327). In the diagnosis of large vessel occlusion, 4D-DNR showed a better confidence level and shorter decision time than 4D-TWIST-MRA. Conclusion: DNN reconstruction may improve the qualitative and quantitative image quality of 4D-TWIST-MRA, and also enhance diagnostic performance for intracranial aneurysm and large vessel occlusion.

Funder

National Research Foundation of Korea

BRACCO

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3