Curcumol β-cyclodextrin inclusion complex enhances radiosensitivity of esophageal cancer under hypoxic and normoxic condition

Author:

Su Meng,Ren Xiaolin,Du Dexi,He Huijuan,Zhang Dahai,Xie Raoying,Deng Xia,Zou ChanglinORCID,Zou Haizhou

Abstract

Abstract Purpose Radiotherapy is an indispensable treatment for esophageal cancer (EC), but radioresistance is not uncommon. Curcumol, as an active extract from traditional Chinese medicines, has been reported to have antitumor activity in various types of human tumor cells. However, its reversal of radioresistance has been rarely reported. Materials and methods In the present study, curcumol was prepared as an inclusion complex with β-cyclodextrin. EC cell lines were treated with radiation and curcumol β-cyclodextrin inclusion complex (CβC), and the effect of radiosensitization of CβC was investigated in vitro and in vivo. The in vitro experiments included cell proliferation assay, clonogenic survival assay, apoptosis assay, cell cycle assay, and western blot assay. Results The in vitro data revealed that CβC and irradiation synergistically inhibited the proliferation, reduced the colony formation, promoted the apoptosis, increased the G2/M phase, inhibited DNA damage repair, and reversed the hypoxia-mediated radioresistance of EC cells to a greater extent than did CβC alone or irradiation alone. The sensitization enhancement ratios (SERs) were 1.39 for TE-1 and 1.48 for ECA109 under hypoxia. The SERs were 1.25 for TE-1 and 1.32 for ECA109 under normoxia. The in vivo data demonstrated that the combination of CβC and irradiation could inhibit tumor growth to the greatest extent compared with either monotherapy alone. The enhancement factor was 2.45. Conclusion This study demonstrated that CβC could enhance radiosensitivity of EC cells under hypoxic and normoxic condition. Thus, CβC can be used as an effective radiosensitizer for EC.

Funder

Wenzhou Municipal Science and Technology Bureau

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3