Ozone enhances the efficacy of radiation therapy in esophageal cancer

Author:

Guo Jiayou1,Guo Jiayi1,Cheng Beibei1,Gong Mengxiao1,Sun Xingbang1,Zhang Hongwei1,Ma Jianxin1

Affiliation:

1. Department of Oncology, Lianyungang Oriental Hospital affiliated to Xuzhou Medical University , Lianyungang 222042, China

Abstract

Abstract Radioresistance is increasingly developed in esophageal cancer. Increasing radiation sensitivity can reduce the mortality of esophageal cancer. To investigate the effect and mechanism of ozone on the radiotherapy sensitization of esophageal carcinoma. KYSE150 cells were xenografted subcutaneously into nude mice and irradiated with 8 Gy radiation according to different subgroups (sham, radiation, ozone and radiation+ozone group (n = 10 per group)). Half of the mice were used to determine the body weight, tumor size and tumor weight. Half of the mice were used to collect peripheral blood. The serum was centrifuged to detect circulating cell-free DNA (cf-DNA), interleukin-6 (IL-6), interferon-γ (IFN-γ), myeloperoxidase (MPO)-DNA complexes, tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9) and hypoxia-inducible factor-1α (HIF-1α) using commercial kits. The levels of phosphorylation AMP-activated protein kinase (p-AMPK) and scavenger receptor-A (SR-A) were measured by immunocytochemistry and Western blotting in the tumor tissues of mice. Ozone alone or combined with radiation therapy significantly reduced the body weight, tumor volume and tumor weight of esophageal cancer compared to the sham group. The ELISA results showed that the levels of cf-DNA, IFN-γ, MPO-DNA complexes, TNF-α, IL-6, HIF-1α and MMP-9 in the peripheral blood of mice treated with ozone combined with radiation were significantly lower compared with the radiation group. Ozone, synergistically with radiation, significantly increased the protein expression of p-AMPK and SR-A. Ozone may increase the radiosensitivity of esophageal cancer by inhibiting neutrophil extracellular traps.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3