Evaluating ChatGPT-4V in chest CT diagnostics: a critical image interpretation assessment

Author:

Dehdab RezaORCID,Brendlin Andreas,Werner Sebastian,Almansour Haidara,Gassenmaier Sebastian,Brendel Jan Michael,Nikolaou Konstantin,Afat Saif

Abstract

Abstract Purpose To assess the diagnostic accuracy of ChatGPT-4V in interpreting a set of four chest CT slices for each case of COVID-19, non-small cell lung cancer (NSCLC), and control cases, thereby evaluating its potential as an AI tool in radiological diagnostics. Materials and methods In this retrospective study, 60 CT scans from The Cancer Imaging Archive, covering COVID-19, NSCLC, and control cases were analyzed using ChatGPT-4V. A radiologist selected four CT slices from each scan for evaluation. ChatGPT-4V’s interpretations were compared against the gold standard diagnoses and assessed by two radiologists. Statistical analyses focused on accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), along with an examination of the impact of pathology location and lobe involvement. Results ChatGPT-4V showed an overall diagnostic accuracy of 56.76%. For NSCLC, sensitivity was 27.27% and specificity was 60.47%. In COVID-19 detection, sensitivity was 13.64% and specificity of 64.29%. For control cases, the sensitivity was 31.82%, with a specificity of 95.24%. The highest sensitivity (83.33%) was observed in cases involving all lung lobes. The chi-squared statistical analysis indicated significant differences in Sensitivity across categories and in relation to the location and lobar involvement of pathologies. Conclusion ChatGPT-4V demonstrated variable diagnostic performance in chest CT interpretation, with notable proficiency in specific scenarios. This underscores the challenges of cross-modal AI models like ChatGPT-4V in radiology, pointing toward significant areas for improvement to ensure dependability. The study emphasizes the importance of enhancing these models for broader, more reliable medical use.

Funder

Universitätsklinikum Tübingen

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3