Diagnostic performances of GPT-4o, Claude 3 Opus, and Gemini 1.5 Pro in “Diagnosis Please” cases

Author:

Sonoda Yuki,Kurokawa Ryo,Nakamura Yuta,Kanzawa Jun,Kurokawa Mariko,Ohizumi Yuji,Gonoi WataruORCID,Abe Osamu

Abstract

Abstract Purpose Large language models (LLMs) are rapidly advancing and demonstrating high performance in understanding textual information, suggesting potential applications in interpreting patient histories and documented imaging findings. As LLMs continue to improve, their diagnostic abilities are expected to be enhanced further. However, there is a lack of comprehensive comparisons between LLMs from different manufacturers. In this study, we aimed to test the diagnostic performance of the three latest major LLMs (GPT-4o, Claude 3 Opus, and Gemini 1.5 Pro) using Radiology Diagnosis Please Cases, a monthly diagnostic quiz series for radiology experts. Materials and methods Clinical history and imaging findings, provided textually by the case submitters, were extracted from 324 quiz questions originating from Radiology Diagnosis Please cases published between 1998 and 2023. The top three differential diagnoses were generated by GPT-4o, Claude 3 Opus, and Gemini 1.5 Pro, using their respective application programming interfaces. A comparative analysis of diagnostic performance among these three LLMs was conducted using Cochrane’s Q and post hoc McNemar’s tests. Results The respective diagnostic accuracies of GPT-4o, Claude 3 Opus, and Gemini 1.5 Pro for primary diagnosis were 41.0%, 54.0%, and 33.9%, which further improved to 49.4%, 62.0%, and 41.0%, when considering the accuracy of any of the top three differential diagnoses. Significant differences in the diagnostic performance were observed among all pairs of models. Conclusion Claude 3 Opus outperformed GPT-4o and Gemini 1.5 Pro in solving radiology quiz cases. These models appear capable of assisting radiologists when supplied with accurate evaluations and worded descriptions of imaging findings.

Funder

The University of Tokyo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3