NMR study of human macroPARPs domains: 1H, 15N and 13C resonance assignment of hPARP14 macro domain 2 in the free and the ADPr bound state

Author:

Fourkiotis Nikolaos K.,Charalampous Periklis,Tsika Aikaterini C.,Kravvariti Konstantina P.,Sideras-Bisdekis Christos,Gallo Angelo,Spyroulias Georgios A.

Abstract

AbstracthPARP14 is a human ADP-ribosyl-transferase (ART) that belongs to the macroPARPs family, together with hPARP9 and hPARP15. It contains a tandem of three macro domains (MD) while each of them has different properties. The first one, namely MD1, has not been reported to exhibit a high binding affinity for ADP-ribose (ADPr) in contrast to the following two (MD2 and MD3). All three MDs exhibit an α/β/α sandwich-like fold as reported by the deposited crystallographic structures. MD2 and MD3 recognize mono-ADP-ribosylated (MARylated) but not poly-ADP-ribosylated (PARylated) substrates and thus they allow hPARP14 to bind its targets, which can be potentially MARylated by its catalytic domain (CD). hPARP14 participates in DNA damage repair process and immune response against viruses like SARS-CoV-2, which also harbors an MD fold. Furthermore, hPARP14 like the other two macroPARPs (hPARP9 and hPARP15), is implicated in numerous types of cancer, such as B-aggressive lymphoma and sarcoma, rendering its MDs as potential important drug targets. Herein, we report the complete NMR backbone and side chain assignment (1H, 13C, 15N) of hPARP14 MD2 in the free and ADPr bound states and the NMR chemical shift-based prediction of its secondary structure elements. This is the first reported NMR study of a hPARP macro domain, paving the way to screen by NMR chemical compounds which may alter the ability of hPARP14 to interact with its substrates affecting its function.

Funder

General Secretariat for Research and Technology

FP7 Research Potential of Convergence Regions

University of Patras

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The connection between PARP14 and SARS-CoV-2;Future Medicinal Chemistry;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3