Feature selection on quantum computers

Author:

Mücke SaschaORCID,Heese RaoulORCID,Müller SabineORCID,Wolter Moritz,Piatkowski NicoORCID

Abstract

AbstractIn machine learning, fewer features reduce model complexity. Carefully assessing the influence of each input feature on the model quality is therefore a crucial preprocessing step. We propose a novel feature selection algorithm based on a quadratic unconstrained binary optimization (QUBO) problem, which allows to select a specified number of features based on their importance and redundancy. In contrast to iterative or greedy methods, our direct approach yields higher-quality solutions. QUBO problems are particularly interesting because they can be solved on quantum hardware. To evaluate our proposed algorithm, we conduct a series of numerical experiments using a classical computer, a quantum gate computer, and a quantum annealer. Our evaluation compares our method to a range of standard methods on various benchmark data sets. We observe competitive performance.

Funder

Bundesministerium für Bildung und Forschung

Technische Universität Dortmund

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Software

Reference46 articles.

1. ANIS MS, Abraham H, Aduoffei, et al. (2021) Qiskit: An open-source framework for quantum computing. https://doi.org/10.5281/zenodo.2573505

2. Bauckhage C, Ojeda C, Sifa R et al (2018) Adiabatic quantum computing for kernel k = 2 means clustering. In: LWDA, pp 21–32

3. Bauckhage C, Ramamurthy R, Sifa R (2020) Hopfield networks for vector quantization. In: Farkaš I, Masulli P, Wermter S (eds) Artificial neural networks and machine learning (ICANN). Springer International Publishing, pp 192–203, https://doi.org/10.1007/978-3-030-61616-8_16

4. Booth M, Reinhardt S, Roy A (2017) Partitioning optimization problems for hybrid classical/quantum execution. Technical Report, https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/_downloads/bd15a2d8f32e587e9e5997ce9d5512cc/qbsolv_techReport.pdf

5. Breiman L, Friedman J, Olshen R et al (1984) Classification and regression trees. Cole Statistics/Probability Series

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3