Computing marginal and conditional divergences between decomposable models with applications in quantum computing and earth observation

Author:

Lee Loong Kuan,Webb Geoffrey I.,Schmidt Daniel F.,Piatkowski Nico

Abstract

AbstractThe ability to compute the exact divergence between two high-dimensional distributions is useful in many applications, but doing so naively is intractable. Computing the $$\alpha \beta $$ α β -divergence—a family of divergences that includes the Kullback–Leibler divergence and Hellinger distance—between the joint distribution of two decomposable models, i.e., chordal Markov networks, can be done in time exponential in the treewidth of these models. Extending this result, we propose an approach to compute the exact $$\alpha \beta $$ α β -divergence between any marginal or conditional distribution of two decomposable models. In order to do so tractably, we provide a decomposition over the marginal and conditional distributions of decomposable models. We then show how our method can be used to analyze distributional changes by first applying it to the benchmark image dataset QMNIST and a dataset containing observations from various areas at the Roosevelt Nation Forest and their cover type. Finally, based on our framework, we propose a novel way to quantify the error in contemporary superconducting quantum computers.

Funder

Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3