Optimizing quantum heuristics with meta-learning

Author:

Wilson MaxORCID,Stromswold Rachel,Wudarski Filip,Hadfield Stuart,Tubman Norm M.,Rieffel Eleanor G.

Abstract

AbstractVariational quantum algorithms, a class of quantum heuristics, are promising candidates for the demonstration of useful quantum computation. Finding the best way to amplify the performance of these methods on hardware is an important task. Here, we evaluate the optimization of quantum heuristics with an existing class of techniques called “meta-learners.” We compare the performance of a meta-learner to evolutionary strategies, L-BFGS-B and Nelder-Mead approaches, for two quantum heuristics (quantum alternating operator ansatz and variational quantum eigensolver), on three problems, in three simulation environments. We show that the meta-learner comes near to the global optima more frequently than all other optimizers we tested in a noisy parameter setting environment. We also find that the meta-learner is generally more resistant to noise, for example, seeing a smaller reduction in performance in Noisy and Sampling environments, and performs better on average by a “gain” metric than its closest comparable competitor L-BFGS-B. Finally, we present evidence that indicates the meta-learner trained on small problems will generalize to larger problems. These results are an important indication that meta-learning and associated machine learning methods will be integral to the useful application of noisy near-term quantum computers.

Funder

AFRL

office of the director of national intelligence

NASA Academic Mission Services

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Software

Reference75 articles.

1. Andrychowicz M, Denil M, Gomez S, Hoffman MW, Pfau D, Schaul T, Shillingford B, De Freitas N (2016) Learning to learn by gradient descent by gradient descent. In: Advances in neural information processing systems, pp 3981–3989

2. Ausiello G, Crescenzi P, iorgio G, Kann V, Marchetti-Spaccamela A, Protasi M (2012) Complexity and approximation: Combinatorial optimization problems and their approximability properties. Springer Science & Business Media

3. Beasley D, Bull DR, Martin RR (1993) An overview of genetic algorithms: Part 1, fundamentals. University computing 15(2):56–69

4. Bello I, Zoph B, Vasudevan V, Le QV (2017) Neural optimizer search with reinforcement learning. In: Proceedings of the 34th international conference on machine learning. JMLR.org, vol 70, pp 459–468

5. Bengio Y, Bengio S, Cloutier J (1990) Learning a synaptic learning rule. Université de Montréal, Dėpartement d’informatique et de recherche opérationnelle

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3