Abstract
Abstract
We provide universal expressions for the classical piece of the amplitude given by the graviton/photon exchange between massive particles of arbitrary spin, at both tree and one loop level. In the gravitational case this leads to higher order terms in the post-Newtonian expansion, which have been previously used in the binary inspiral problem. The expressions are obtained in terms of a contour integral that computes the Leading Singularity, which was recently shown to encode the relevant information up to one loop. The classical limit is performed along a holomorphic trajectory in the space of kinematics, such that the leading order is enough to extract arbitrarily high multipole corrections. These multipole interactions are given in terms of a recently proposed representation for massive particles of any spin by Arkani-Hamed et al. This explicitly shows universality of the multipole interactions in the effective potential with respect to the spin of the scattered particles. We perform the explicit match to standard EFT operators for S =
$$ \frac{1}{2} $$
1
2
and S = 1. As a natural byproduct we obtain the classical pieces up to one loop for the bending of light.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
121 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献