The simplest massive S-matrix: from minimal coupling to black holes

Author:

Chung Ming-Zhi,Huang Yu-tin,Kim Jung-Wook,Lee Sangmin

Abstract

Abstract In this paper, we explore the physics of electromagnetically and gravitationally coupled massive higher spin states from the on-shell point of view. Starting with the three-point amplitude, we focus on the simplest amplitude characterized by matching to minimal coupling in the UV. In the IR, for charged states this leads to g = 2 for arbitrary spin, and the leading deformation corresponds to the anomalous magnetic dipole moment. We proceed to construct the (gravitational) Compton amplitude for generic spins via consistent factorization. We find that in gravitation couplings, the leading deformation leads to inconsistent factorization. This implies that for systems with Gauge2 = Gravity relations, such as perturbative string theory, all charged states must have g = 2. It is then natural to ask for generic spin, what is the theory that yields such minimal coupling. By matching to the one body effective action, we verify that for large spins the answer is Kerr black holes. This identification is then an on-shell avatar of the no- hair theorem. Finally using this identification as well as the newly constructed Compton amplitudes, we proceed to compute the spin-dependent pieces for the classical potential at 2PM order up to degree four in spin operator of either black holes.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference43 articles.

1. N. Arkani-Hamed, T.-C. Huang and Y.-t. Huang, Scattering Amplitudes For All Masses and Spins, arXiv:1709.04891 [INSPIRE].

2. F. Cachazo and A. Guevara, Leading Singularities and Classical Gravitational Scattering, arXiv:1705.10262 [INSPIRE].

3. A. Guevara, Holomorphic Classical Limit for Spin Effects in Gravitational and Electromagnetic Scattering, arXiv:1706.02314 [INSPIRE].

4. N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].

5. S. Caron-Huot and Z. Zahraee, Integrability of Black Hole Orbits in Maximal Supergravity, arXiv:1810.04694 [INSPIRE].

Cited by 171 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3