On the Terracini Locus of Projective Varieties

Author:

Ballico Edoardo,Chiantini Luca

Abstract

AbstractWe introduce and study properties of the Terracini locus of projective varieties X, which is the locus of finite sets $$S \subset X$$ S X such that 2S fails to impose independent conditions to a linear system L. Terracini loci are relevant in the study of interpolation problems over double points in special position, but they also enter naturally in the study of special loci contained in secant varieties to projective varieties.We find some criteria which exclude that a set S belongs to the Terracini locus. Furthermore, in the case where X is a Veronese variety, we bound the dimension of the Terracini locus and we determine examples in which the locus has codimension 1 in the symmetric product of X.

Funder

Università degli Studi di Siena

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference15 articles.

1. Alexander, J., Hirschowitz, A.: Polynomial interpolation in several variables. J. Algebraic Geom. 4, 201–222 (1995)

2. Amendola, C., Ranestad, K., Sturmfels, B.: Algebraic identifiability of Gaussian mixtures. Int. Math. Res. Not. 21, 6556–6580 (2018)

3. Angelini, E., Chiantini, L., Mazzon, A.: Identifiability for a class of symmetric tensors. Mediterr. J. Math. 16, 97 (2019)

4. Angelini, E., Chiantini, L., Vannieuwenhoven, N.: Identifiability beyond Kruskal's bound for symmetric tensors of degree 4. Rend. Lincei Mat. Applic. 29, 465–485 (2018)

5. Ballico, E., Chiantini, L.: Sets computing the symmetric tensor rank. Mediterr. J. Math. 10, 643–654 (2013)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimal Terracini loci in the plane: gaps and non-gaps;Rendiconti del Circolo Matematico di Palermo Series 2;2024-08-12

2. Identifiability and singular locus of secant varieties to Grassmannians;Collectanea Mathematica;2024-01-06

3. Decompositions and Terracini loci of cubic forms of low rank;Contemporary Mathematics;2024

4. Waring decompositions of special ternary forms with different Hilbert functions;Contemporary Mathematics;2024

5. Secant loci of scrolls over curves;Contemporary Mathematics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3