Regulation of fatty acid composition related to ontogenetic changes and niche differentiation of a common aquatic consumer

Author:

Chaguaceda F.ORCID,Eklöv P.,Scharnweber K.

Abstract

AbstractFatty acids (FAs) are key nutrients for fitness which take part in multiple physiological processes over the ontogeny of organisms. Yet, we lack evidence on how FA nutrition mediates life-history trade-offs and ontogenetic niche shifts in natural populations. In a field study, we analyzed ontogenetic changes in the FAs of Eurasian perch (Perca fluviatilis L.), a widespread fish that goes through ontogenetic niche shifts and can have high individual niche specialization. Diet explained most of the variation in the FA composition of perch dorsal muscle over early ontogeny (28%), while the total length explained 23%, suggesting that perch significantly regulated FA composition over early ontogeny. Condition explained 1% of the remaining variation. 18:3n-3 (ALA) and 18:4n-3 (SDA) indicated planktivory; 18:1n-7, benthivory; and 22:6n-3 (DHA), piscivory in perch diet. Conversely, perch regulated long-chained polyunsaturated fatty acids (PUFAs), such as 20:5n-3 (EPA), 20:4n-6 (ARA) and 22:6n-3 (DHA) over ontogeny, emphasizing the role of such FAs in early growth and sexual maturation. Adult perch increasingly retained 16:1n-7 and 18:1n-9 suggesting higher energy storage in older perch. Furthermore, differences in DHA availability in diet correlated with intra-cohort differences in perch growth, potentially hindering the overall use of benthic resources and promoting earlier shifts to piscivory in littoral habitats. Overall, this study indicates that in addition to diet, internal regulation may be more important for FA composition than previously thought. Differences between FA needs and FA availability may lead to life-history trade-offs that affect the ecology of consumers, including their niche.

Funder

Knut och Alice Wallenbergs Stiftelse

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3