A quantile regression perspective on external preference mapping

Author:

Davino CristinaORCID,Næs TormodORCID,Romano RosariaORCID,Vistocco DomenicoORCID

Abstract

AbstractExternal preference mapping is widely used in marketing and R&D divisions to understand the consumer behaviour. The most common preference map is obtained through a two-step procedure that combines principal component analysis and least squares regression. The standard approach exploits classical regression and therefore focuses on the conditional mean. This paper proposes the use of quantile regression to enrich the preference map looking at the whole distribution of the consumer preference. The enriched maps highlight possible different consumer behaviour with respect to the less or most preferred products. This is pursued by exploring the variability of liking along the principal components as well as focusing on the direction of preference. The use of different aesthetics (colours, shapes, size, arrows) equips standard preference map with additional information and does not force the user to change the standard tool she/he is used to. The proposed methodology is shown in action on a case study pertaining yogurt preferences.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Economics and Econometrics,Social Sciences (miscellaneous),Modeling and Simulation,Statistics and Probability,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3